56 research outputs found

    Mathematical models for planning support

    Get PDF
    In this paper we describe how computer systems can provide planners with active planning support, when these planners are carrying out their daily planning activities. This means that computer systems actively participate in the planning process by automatically generating plans or partial plans. Active planning support by computer systems requires the application of mathematical models and solution techniques. In this paper we describe the modeling process in general terms, as well as several modeling and solution techniques. We also present some background information on computational complexity theory, since most practical planning problems are hard to solve. We also describe how several objective functions can be handled, since it is rare that solutions can be evaluated by just one single objective. Furthermore, we give an introduction into the use of mathematical modeling systems, which are useful tools in a modeling context, especially during the development phases of a mathematical model. We finish the paper with a real life example related to the planning process of the rolling stock circulation of a railway operator.optimization;mathematical models;modeling process;planning support;Planning

    Complementary triangular forms

    Get PDF
    The notion of simultaneous reduction of pairs of matrices and linear operators to triangular forms is introduced and a survey of known material on the subject is given. Further, some open problems are pointed out throughout the text. The paper is meant to be accessible to the non-specialist and does not contain any new results or proofs

    The wavelet X-ray transform

    Get PDF
    Combined use of the X-ray (Radon) transform and the wavelet transform has proved to be useful in application areas such as diagnostic medicine and seismology. In the present paper, the wavelet X-ray transform is introduced. This transform performs one-dimensional wavelet transforms along lines in {oR^n, which are parameterized in the same fashion as for the X-ray transform. It is shown that the transform has the same convenient inversion properties as the wavelet transform. The reconstruction formula receives further attention in order to obtain usable discretizations of the transform. Finally, a connection between the wavelet X-ray transform and the filtered backprojection formula is discussed

    Linear Parametric Sensitivity Analysis of the Constraint Coefficient Matrix in Linear Programs

    Get PDF
    Sensitivity analysis is used to quantify the impact of changes in the initial data of linear programs on the optimal value. In particular, parametric sensitivity analysis involves a perturbation analysis in which the effects of small changes of some or all of the initial data on an optimal solution are investigated, and the optimal solution is studied on a so-called critical range of the initial data, in which certain properties such as the optimal basis in linear programming are not changed. Linear one-parameter perturbations of the objective function or of the so-called ”right-hand side” of linear programs and their effect on the optimal value is very well known and can be found in most college textbooks on Management Science or Operations Research. In contrast, no explicit formulas have been established that describe the behavior of the optimal value under linear one-parameter perturbations of the constraint coefficient matrix. In this paper, such explicit formulas are derived in terms of local expressions of the optimal value function and intervals on which these expressions are valid. We illustrate this result using two simple examples

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    E-business and circular supply chains : increased business opportunities by IT-based customer oriented return-flow management

    Get PDF
    This paper deals with the application of IT in circular supply chains (CSCs). We consider information on the installed base critical, and present an illustrative example. Next we discuss a framework of different kinds of value contained in a return, and IT-applications useful in supporting its recovery or neutralisation in case of negative externalities. Also we show which kind of CSC is needed for which kind of return. We illustrate our work by three real life case studies.reverse logistics;supply chain management;electronic commerce;product life cycle

    Mathematical models for planning support

    Get PDF
    In this paper we describe how computer systems can provide planners with active planning support, when these planners are carrying out their daily planning activities. This means that computer systems actively participate in the planning process by automatically generating plans or partial plans. Active planning support by computer systems requires the application of mathematical models and solution techniques. In this paper we describe the modeling process in general terms, as well as several modeling and solution techniques. We also present some background information on computational complexity theory, since most practical planning problems are hard to solve. We also describe how several objective functions can be handled, since it is rare that solutions can be evaluated by just one single objective. Furthermore, we give an introduction into the use of mathematical modeling systems, which are useful tools in a modeling context, especially during the development phases of a mathematical model. We finish the paper with a real life example related to the planning process of the rolling stock circulation of a railway operator

    The Value of Information in Container Transport: Leveraging the Triple Bottom Line

    Get PDF
    Planning the transport of maritime containers from the sea port to final destinations while using multiple transport modes is challenged by uncertainties regarding the time the container is released for further transport or the transit time from the port to its final destination. This paper assesses the value of information in container transport in terms of multiple performance dimensions, i.e. logistics costs, reliability, security, and emissions. The analysis is done using a single period model where a decision maker allocates arriving containers to two transport modes (slow, low price, no flexible departure times, versus fast, high price, flexible departure times). We construct a frontier of Pareto optimal decisions under each of the information scenarios and show that these frontiers move in a favorable direction when the level of information progresses. Each of the Pareto frontiers help strike the balance between the aforementioned performance dimensions. The mathematical results are illustrated using two numerical examples involving barge transport and train transport

    M. Holschneider,Wavelets: An Analysis Tool

    Get PDF
    • 

    corecore